1 Isometric Embedding

Let M^{n} be an n-dimensional Riemannian manifold with metric locally given by

$$
d s^{2}=g_{i j}(x) d x^{i} d x^{j},
$$

where $x=\left(x^{1}, \ldots, x^{n}\right)$ are local coordinates on M.
Isometric embedding means a one-to-one C^{∞}-mapping

$$
u: M^{n} \rightarrow \mathbb{R}^{N}
$$

such that

$$
<d u, d u>=d s^{2}
$$

or in local coordinates

$$
\begin{equation*}
\sum_{\lambda=1}^{N} \frac{\partial u^{\lambda}}{\partial x^{i}} \frac{\partial u^{\lambda}}{\partial x^{j}}=g_{i j}, \quad i, j=1, \ldots, n . \tag{1}
\end{equation*}
$$

So a local isometric embedding problem is reduced to a PDE system. There are three different cases to deal with according to the number of equations and the number of unknowns. The number of equations of (1) is $\frac{n(n+1)}{2}$ and the number of unknowns is $N=n+d$. The system (1) is
(i) underdetermined if $\frac{n(n+1)}{2}<N$,
(ii) determined if $\frac{n(n+1)}{2}=N$,
(iii) overdetemined if $\frac{n(n+1)}{2}>N$.

In the determined case, there exists an analytic embedding by the following theorem.

Theorem 1.1 (Cartan-Janet,[3]). If $N=\frac{1}{2} n(n+1)$ and $g_{i j} \in C^{\omega}$, then there exists a C^{ω}-solution $u=\left(u^{1}, \ldots, u^{\frac{1}{2} n(n+1)}\right)$.

Some of the results on the underdetermined case were obtained by J. Nash[4].

Theorem 1.2. Any Riemannian n-manifold with C^{k} positive metric, where $3 \leq k \leq \infty$, has a C^{k} isometric embedding in $\left(\frac{3}{2} n^{3}+7 n^{2}+\frac{11}{2} n\right)$ space, in fact in any small portion of this space.

In overdetermined case, we consider the case of codimension one.

2 Isometric Embedding of Codimension One

Isometric embedding of codimension one is an isometric embedding

$$
\begin{equation*}
u: M^{n} \rightarrow \mathbb{R}^{n+1} \tag{2}
\end{equation*}
$$

This is determined if $n=2$ and overdetermined if $n>2$. The question of finding a necessary and sufficient condition for the existence of local isometric embedding (2) is reduced to the problem of solving the Gauss and Codazzi equations.

Let $\left(e_{1}, \ldots, e_{n+1}\right)$ be an adapted orthonormal frame and $\theta=\left(\theta^{1}, \ldots, \theta^{n}\right)^{t}$ be a dual frame of $\left(e_{1}, \ldots, e_{n}\right)$. For any 1-forms η and ψ, the symmetric product is defined by

$$
\eta \circ \psi=\frac{1}{2}(\eta \otimes \psi+\psi \otimes \eta) .
$$

Let $I=\sum_{i=1}^{n} \theta^{i} \circ \theta^{j}=\sum_{i=1}^{n}\left(\theta^{i}\right)^{2}$ be the first fundamental form of M.
Let X be a tangent vector field on M and $Y=\sum_{i=1}^{n+1} a_{i} \frac{\partial}{\partial x^{i}}$ a vector field on M which is not necessarily tangent to M. Define

$$
\bar{\nabla}_{X} Y=\sum_{i=1}^{n+1}\left(X a_{i}\right) \frac{\partial}{\partial x_{i}}
$$

Proposition 2.1. If X and Y are tangent vector fields to M, then $\bar{\nabla}_{X} Y$ $\bar{\nabla}_{Y} X=[X, Y]$. So $[X, Y]$ is also a tangent vector field to M.

Proof. If X and Y are tangent vector fields, then $X=\sum_{j=1}^{n} b_{j} \frac{\partial}{\partial x_{j}}$ and $Y=\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}$. Thus

$$
\begin{aligned}
{[X, Y]=} & X Y-Y X \\
= & \sum_{j=1}^{n} b_{j} \frac{\partial}{\partial x_{j}}\left(\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}\right)-\sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}}\left(\sum_{j=1}^{n} b_{j} \frac{\partial}{\partial x_{j}}\right) \\
= & \sum_{i, j} b_{j} \frac{\partial}{\partial x_{j}}\left(a_{i}\right) \frac{\partial}{\partial x_{i}}+\sum_{i, j} a_{i} b_{j} \frac{\partial}{\partial x_{j}} \frac{\partial}{\partial x_{i}} \\
& -\sum_{i, j} a_{i} \frac{\partial}{\partial x_{i}}\left(b_{j}\right) \frac{\partial}{\partial x_{j}}-\sum_{i, j} a_{i} b_{j} \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} \\
= & \bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X .
\end{aligned}
$$

Since $\bar{\nabla}_{X} Y$ and $\bar{\nabla}_{Y} X$ are tangent to M, so is $[X, Y]$.
Definition 2.2. For tangent vector fields X, Y and normal vector field N, the second fundamental form Π of M is defined by

$$
\Pi(X, Y)=-<\bar{\nabla}_{X} N, Y>
$$

Proposition 2.3. For tangent vector fields X, Y and normal vector field N, the second fundamental form has the properties :

$$
\begin{gathered}
\Pi(X, Y)=<\bar{\nabla}_{X} Y, N> \\
\Pi(X, Y)=\Pi(Y, X)
\end{gathered}
$$

Proof. Since N is a normal vector field, $\langle Y, N\rangle=0$. Thus

$$
\begin{aligned}
X<Y, N> & =<\bar{\nabla}_{X} Y, N>+<Y, \bar{\nabla}_{X} N> \\
& =0
\end{aligned}
$$

By definition 2.2, we have

$$
\begin{aligned}
\Pi(X, Y) & =-<\bar{\nabla}_{X} N, Y> \\
& =<Y, \bar{\nabla}_{X} N> \\
& =<\bar{\nabla}_{X} Y, N>
\end{aligned}
$$

Using the previous proposition, we get

$$
\begin{aligned}
\Pi(X, Y)-\Pi(Y, X) & =<\bar{\nabla}_{X} Y, N>-<\bar{\nabla}_{Y} X, N> \\
& =<\bar{\nabla}_{X} Y-\bar{\nabla}_{Y} X, N> \\
& =<[X, Y], N> \\
& =0
\end{aligned}
$$

Since Π is a symmetric 2 -form on M, we write

$$
\Pi=\sum_{i, j=1}^{n} h_{i j} \theta^{i} \otimes \theta^{j}
$$

where $h_{i j}=h_{j i}$. Then $h_{i j}=\Pi\left(e_{i}, e_{j}\right)$. Since $\left(h_{i j}\right)$ is symmetric, its eigenvalues are real. Let k_{1}, \ldots, k_{n} be eigenvalues. We call them the principal curvatures.

Theorem 2.4. Let $\left(\omega_{i}^{j}\right)=A^{-1} d A$, where $A=\left(e_{1}, \ldots, e_{n+1}\right)$. On M,

$$
\omega_{i}^{n+1}=\sum_{\lambda=1}^{n} h_{i \lambda} \theta^{\lambda} .
$$

Proof. We know that $\bar{\nabla}_{X} e_{i}=\sum_{j=1}^{n+1} \omega_{i}^{j}(X) e_{j}$. Since ω is generated by $\theta^{1}, \ldots, \theta^{n}$, it is enough to show that $\omega_{i}^{n+1}=h_{i \lambda}$. Since $\left(h_{i j}\right)$ is symmetric, $h_{i \lambda}=h_{\lambda i}$ and since $\left(e_{1}, \ldots, e_{n}, e_{n+1}\right)$ is the adapted orthonormal frame, e_{n+1} is a normal vector. Therefore, we have

$$
\begin{aligned}
h_{i \lambda} & =\Pi\left(e_{\lambda}, e_{i}\right) \\
& =-<\bar{\nabla}_{\lambda} e_{n+1}, e_{i}> \\
& =-<\sum_{j=1}^{n+1} \omega_{n+1}^{j}\left(e_{\lambda}\right) e_{j}, e_{i}> \\
& =-\omega_{n+1}^{i}\left(e_{\lambda}\right) \\
& =\omega_{i}^{n+1}\left(e_{\lambda}\right)
\end{aligned}
$$

The last equality follows from the fact that ω is skew-symmetric as shown below. Since $<e_{i}, e_{j}>=\delta_{i j}$, we have

$$
\begin{aligned}
0 & =d<e_{i}, e_{j}> \\
& =<d e_{i}, e_{j}>+<e_{i}, d e_{j}> \\
& =<\sum_{\lambda=1}^{n+1} \omega_{i}^{\lambda} e_{\lambda}, e_{j}>+<e_{i}, \sum_{\lambda=1}^{n+1} \omega_{j}^{\lambda} e_{\lambda}> \\
& =\omega_{i}^{j}+\omega_{j}^{i} .
\end{aligned}
$$

From now on we consider the case of $n=3$. In order to obtain the structure equations, consider $E(4) \hookrightarrow G l(5, \mathbb{R})$ with Maurer-Cartan form $\gamma=g^{-1} d g$ of $E(4) . E(4)$ is the set of all matrices $\left[\begin{array}{ll}1 & 0 \\ x & A\end{array}\right]$ with $^{t} A A=I$. Let $\sigma: M \longrightarrow E(4)$ be an adpated frame $\sigma(x)=\left(e_{1}, e_{2}, e_{3}, e_{4}\right)_{x}$. Then it follows that

$$
\begin{aligned}
\sigma^{*}(\gamma) & =\left[\begin{array}{cc}
0 & 0 \\
{ }^{t} A d X & { }^{t} A d A
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
\theta^{1} & 0 & -\omega_{1}^{2} & -\omega_{1}^{3} & -\eta_{1} \\
\theta^{2} & \omega_{1}^{2} & 0 & -\omega_{2}^{3} & -\eta_{2} \\
\theta^{3} & \omega_{1}^{3} & \omega_{2}^{3} & 0 & -\eta_{3} \\
0 & \eta_{1} & \eta_{2} & \eta_{3} & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 0 & 0 \\
\theta & \omega & -{ }^{t} \eta \\
0 & \eta & 0
\end{array}\right],
\end{aligned}
$$

where $\eta_{i}=\omega_{i}{ }^{4}, A=\left(e_{1}, \ldots, e_{4}\right), \eta=\left(\eta_{1}, \eta_{2}, \eta_{3}\right), \theta=\left[\begin{array}{c}\theta_{1} \\ \theta_{2} \\ \theta_{3}\end{array}\right]$ and
$\omega=\left[\begin{array}{ccc}0 & -\omega_{1}{ }^{2} & -\omega_{1}{ }^{3} \\ \omega_{1}{ }^{2} & 0 & -\omega_{2}{ }^{3} \\ \omega_{1}{ }^{3} & \omega_{2}{ }^{3} & 0\end{array}\right]$.
Maurer-Cartan equation $d \gamma=-\gamma \wedge \gamma$ implies that

$$
d\left(\sigma^{*} \gamma\right)=\left(-\sigma^{*} \gamma\right) \wedge\left(\sigma^{*} \gamma\right)
$$

Thus

$$
\begin{aligned}
d\left[\begin{array}{ccc}
0 & 0 & 0 \\
\theta & \omega & -{ }^{t} \eta \\
0 & \eta & 0
\end{array}\right] & =-\left[\begin{array}{ccc}
0 & 0 & 0 \\
\theta & \omega & -{ }^{t} \eta \\
0 & \eta & 0
\end{array}\right] \wedge\left[\begin{array}{ccc}
0 & 0 & 0 \\
\theta & \omega & -{ }^{t} \eta \\
0 & \eta & 0
\end{array}\right] \\
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
d \theta & d \omega & -{ }^{t}(d \eta) \\
0 & d \eta & 0
\end{array}\right] } & =-\left[\begin{array}{ccc}
0 & 0 & 0 \\
\omega \wedge \theta & \omega \wedge \omega-{ }^{t} \eta \wedge \eta & -\omega \wedge{ }^{t} \eta \\
\eta \wedge \theta & \eta \wedge \omega & -\eta \wedge{ }^{t} \eta
\end{array}\right] .
\end{aligned}
$$

By Theorem 2.4, we have $\eta_{i}=\omega_{i}^{4}=\sum_{\lambda=1}^{3} h_{i \lambda} \theta^{\lambda}$, that is, $\eta={ }^{t} \theta H$.
Thus we obtain

$$
\begin{gathered}
d \theta=-(\omega \wedge \theta) \\
d \omega=-\omega \wedge \omega+{ }^{t} \eta \wedge \eta \quad(\text { Gauss equation }) \\
d \eta=-\eta \wedge \omega \quad(\text { Codazzi equation }) \\
\eta \wedge \theta=0 \\
\eta \wedge{ }^{t} \eta=0 \\
\eta={ }^{t} \theta H
\end{gathered}
$$

It is enough to show that there exists the second fundamental form $\Pi=\left(h_{i j}\right)=H$ by the following theorem

Theorem 2.5 (Bonnet, [5]). Suppose that two hypersurfaces M and $\widetilde{M} \subset \mathbb{R}^{n+1}$ have the same first and second fundamental forms. Then they are congruent.

Let us summarize the process of solving the case of $n=3$ as follows:
(i) Start with metric $g=I$.
(ii) Find orthonormal frame θ such that $I=\sum_{i=1}^{3}(\theta)^{2}$.
(iii) Find Levi-Civita connection for $\left(\omega_{i}^{j}\right) \quad i, j=1,2,3$ such that $d \theta=$ $-\omega \wedge \theta$ and ${ }^{t} \omega=-\omega$. Then compute curvature $\Phi=d \omega+\omega \wedge \omega=$ ${ }^{t} \eta \wedge \eta$.
(iv) Solve the algebraic equation $\Phi=H \theta^{t} \theta H$ for H. Compute ${ }^{t} \eta \wedge \eta=$ $H \theta \wedge{ }^{t} \theta H$. Let $\Phi=\left(\Phi_{i}^{j}\right)$. Compare both sides of $\Phi=H \theta \wedge^{t} \theta H$. Both sides are skew-symmetric. Then we obtain the following three equations.

$$
\begin{aligned}
\left(h_{22} h_{33}-h_{23}^{2}\right) \theta^{2} \wedge \theta^{3} & +\left(h_{23} h_{13}-h_{12} h_{33}\right) \theta^{3} \wedge \theta^{1} \\
+ & \left(h_{12} h_{23}-h_{22} h_{13}\right) \theta^{1} \wedge \theta^{2}=\Phi_{2}^{3}, \\
\left(h_{13} h_{23}-h_{12} h_{33}\right) \theta^{2} \wedge \theta^{3} & +\left(h_{11} h_{33}-h_{13}^{2}\right) \theta^{3} \wedge \theta^{1} \\
+ & \left(h_{12} h_{13}-h_{11} h_{23}\right) \theta^{1} \wedge \theta^{2}=-\Phi_{1}^{3}, \\
\left(h_{12} h_{23}-h_{13} h_{22}\right) \theta^{2} \wedge \theta^{3} & +\left(h_{13} h_{12}-h_{11} h_{23}\right) \theta^{3} \wedge \theta^{1} \\
& +\left(h_{11} h_{22}-h_{12}^{2}\right) \theta^{1} \wedge \theta^{2}=\Phi_{1}^{2} .
\end{aligned}
$$

In matrix form, these equations are

$$
\operatorname{adj}(H)\left[\begin{array}{c}
\theta^{2} \wedge \theta^{3} \\
\theta^{3} \wedge \theta^{1} \\
\theta^{1} \wedge \theta^{2}
\end{array}\right]=\left[\begin{array}{c}
\Phi_{2}^{3} \\
-\Phi_{1}^{3} \\
\Phi_{1}^{2}
\end{array}\right] .
$$

To compute $\operatorname{adj}(H)=K$, evaluate on $\left(e_{k}, e_{l}\right)$. Let $\Phi_{i k l}^{j}=\Phi_{i}^{j}\left(e_{k}, e_{l}\right)$. Then

$$
K=\left[\begin{array}{ccc}
\Phi_{223}^{3} & \Phi_{231}^{3} & \Phi_{212}^{3} \\
-\Phi_{123}^{3} & -\Phi_{131}^{3} & -\Phi_{112}^{3} \\
\Phi_{123}^{2} & \Phi_{131}^{2} & \Phi_{112}^{2}
\end{array}\right]
$$

Since $K=\operatorname{adj}(H)=(\operatorname{det} H) H^{-1}$,

$$
\begin{aligned}
H & =\frac{1}{\operatorname{det} H} K^{-1}, \\
\operatorname{det} K & =(\operatorname{det} H)^{3}(\operatorname{det} H)^{-1} \\
& =(\operatorname{det} H)^{2} .
\end{aligned}
$$

Thus $\operatorname{det} H= \pm \sqrt{\operatorname{det} K}$. If $\operatorname{det} K>0$, Gauss equation is solvable and the solution is unique up to sign and if $\operatorname{det} K<0$, there is no solution.
(v) Check whether H satisfies Codazzi equation $d\left({ }^{t} \theta H\right)=-\left({ }^{t} \theta H\right) \wedge \omega$. If it holds, then H is a solution.

Here is a more general result of the codimension one case under some restrictions for M^{n} for $n \geq 5$. This result was shown by J. Vilms[6].

Let V be an n-dimensional real vector space with inner product. Let $\Lambda^{2} V$ denote the $\binom{n}{2}$ - dimensional space of bivectors of V. A linear map $L: V \rightarrow V$ defines a linear map $L \wedge L: \Lambda^{2} V \rightarrow \Lambda^{2} V$ by $(L \wedge L)(x \wedge y)=$ $L x \wedge L y$. When V is taken to be the tangent space at a point of M^{n}, the curvature tensor R at that point can be thought of as a symmetric linear map $R: \Lambda^{2} V \rightarrow \Lambda^{2} V$. Letting L denote the second fundamental form operator and denoting the covariant derivative by ∇, we can express the Gauss and Codazzi equations as $R=L \wedge R$ and ∇L is symmetric. On the above setting, the problem of locally isometrically embedding into \mathbb{R}^{n+1} a C^{3} Riemannian manifold M^{n} with curvature of rank ≥ 6 is reduced to the following algebraic question: Given a symmetric linear map $R: \Lambda^{2} V \rightarrow \Lambda^{2} V$, find necessary and sufficient condition in order that there exists a symmetric linear map $L: V \rightarrow V$ satisfying $R=L \wedge L$.

Theorem 2.6 (J. Vilms[6]). Let M^{n}, with $n \geq 5$, be a Riemannian manifold with nonsingular curvature tensor R. Then M^{n} admits local isometric imbedding into \mathbb{R}^{n+1} if and only if
(1) $R\left(x_{1} \wedge x_{2}\right) \wedge R\left(x_{3} \wedge x_{4}\right)+R\left(x_{1} \wedge x_{3}\right) \wedge R\left(x_{2} \wedge x_{4}\right)=0$, for all $x_{i} \in V$, and
(2) $R_{k l}^{i j} R_{i q}^{k p} R_{j p}^{l q}+\frac{1}{4} R_{k l}^{i j} R_{p q}^{k l} R_{i j}^{p q}>0$.

Moreover, if $n \equiv 3 \bmod 4$, then (1) can be replaced by $\operatorname{det} R>0$.

References

[1] R. Bryant, S. S. Chern, R. Gardner, H. Goldschmidt and P. Griffiths, Exterior differential systems (1991), Springer-Verlag, New York, Berlin, Heidelberg.
[2] R. Bryant, P. Griffiths and D. Yang, Characteristics and existence of isometric embeddings, Duke Math. J. 50 (1983), 893-994.
[3] P. Griffiths and G. Jensen, Differential systems and isometric embeddings, Annals of Math Study's 114 (1987), Princeton University Press, Princeton,New Jersey.
[4] J. Nash, The embedding problem for Riemannian manifolds, Ann. of Math.63(1956), 20-64.
[5] M. Spivak, A comprehensive Introduction to differential geometry (1979), Publish or Perish, Inc, Berkeley.
[6] J. Vilms, Local isometric imbedding of Riemannian n-manifolds into Euclidean ($n+1$)-space, J. Diff. Geom. 12 (1977), 197-202.

