1 Isometric Embedding

Let M™ be an n-dimensional Riemannian manifold with metric locally
given by
ds® = g;j(z)dr'dx?

where z = (2!,...,2") are local coordinates on M.

Isometric embedding means a one-to-one C'*°-mapping
w: M®— RN
such that
< du,du >= ds*
or in local coordinates
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So a local isometric embedding problem is reduced to a PDE system.
There are three different cases to deal with according to the number of

equations and the number of unknowns. The number of equations of (1)

is @ and the number of unknowns is N = n + d. The system (1) is

(i) underdetermined if @ <N,
(i) determined if ") = N

(ili) overdetemined if @ > N.

In the determined case, there exists an analytic embedding by the

following theorem.

Theorem 1.1 (Cartan-Janet,[3]). If N = in(n+ 1) and g; € C¥,

then there exists a C¥-solution u = (u',. .. ,u%"(nﬂ))'

Some of the results on the underdetermined case were obtained by J.

Nash[4].



Theorem 1.2. Any Riemannian n-manifold with C* positive metric,
where 3 < k < 0o, has a C* isometric embedding in (3n® + Tn* 4+ Ln)-

space, in fact in any small portion of this space.

In overdetermined case, we consider the case of codimension one.

2 Isometric Embedding of Codimension One
Isometric embedding of codimension one is an isometric embedding
w: M™ — R (2)

This is determined if n = 2 and overdetermined if n > 2. The question
of finding a necessary and sufficient condition for the existence of local
isometric embedding (2) is reduced to the problem of solving the Gauss
and Codazzi equations.

Let (ey,. .., enq1) be an adapted orthonormal frame and § = (6, ..., 6")!
be a dual frame of (eq,...,e,). For any 1-forms n and 1, the symmetric

product is defined by

now—%(n®w+w®n)-

n

Let I = Z 0 0 = Z(Qi)Q be the first fundamental form of M.

i=1 i=1
n+1

0
Let X be a tangent vector field on M and Y = E Gigs @ vector field
x’L
i=1

on M which is not necessarily tangent to M. Define

n+1
0

VxY = (Xa;) o

i=1

Proposition 2.1. If X andY are tangent vector fields to M, then VxY —
WX = [X,Y]. So [X,Y] is also a tangent vector field to M.



Proof. If X and Y are tangent vector fields, then X = Z;L: i and
Yy =>" 1a18 . Thus

[X,Y] = XY -YX
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= WY -WX
Since VyY and Vi X are tangent to M, so is [X,Y]. O

Definition 2.2. For tangent vector fields X, Y and normal vector field
N, the second fundamental form II of M is defined by

II(X,Y)=—-<VxN,Y >.

Proposition 2.3. For tangent vector fields X, Y and normal vector field

N, the second fundamental form has the properties :
(X,Y) =< VxY,N >,
II(X,Y) =11(Y, X).
Proof. Since N is a normal vector field, < Y, N >= 0. Thus

X<Y,N> = <VyY,N>+<Y,VgN >

= 0.
By definition 2.2, we have
X,Y) = —<VxN,Y >
= <Y, VygN >
= < vX}/,N > .



Using the previous proposition, we get

(X,Y) -1V, X) = <VxV,N>-<WX,N >
= <WY -WX,N >
= <[X,Y],N >
= 0.

Since II is a symmetric 2-form on M, we write

n
T=> hit' @6
ij=1
where h;; = hj;. Then h;; = I(e;, e;). Since (h;;) is symmetric, its eigen-
values are real. Let kq, ..., k, be eigenvalues. We call them the principal

curvatures.

Theorem 2.4. Let (w’) = A7'dA, where A= (e1,...,e,11). On M,

n
Wit = " hin6*
A=1

Proof. We know that Vye; = Z;;Lll w!(X)e;. Since w is generated by
0, ...,0", it is enough to show that W™ = h;y. Since (h;;) is symmetric,
hix = hy; and since (ey,...,e,, e,11) is the adapted orthonormal frame,

ént1 is a normal vector. Therefore, we have

hix = I(ey, e;)

= — < Viepq1,6 >
n+1

= — <) Whileej,e >
j=1

= _W;H(ek)

= Wi (en).
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The last equality follows from the fact that w is skew-symmetric as shown

below. Since < e;,e; >= 0;;, we have

0 = d<ee; >

= < dei,ej >+ < ei,dej >
n+1 n+1

= < Zw?e,\,ej >+ < ei,Zw?e,\ >
A=1 A=1
= w! + w;
L
From now on we consider the case of n = 3. In order to obtain the
structure equations, consider £(4) — GI(5,R) with Maurer-Cartan form

0 ] with tAA = 1.

1
v =g 'dg of E(4). E(4)is the set of all matrices [
T

Let 0 : M — E(4) be an adpated frame o(x) = (eq, e, €3, €4),. Then it
follows that

I 0
7O = i tada
00 0 0 0 ]
o' 0 —w? —wP -y
= 02 w% 0 —wg’ —1)o
0 Wi ows 0 —n
L0 m ;e "3 0 |
[0 0 0
= 10w —'n|,
| 0n O
0,
where 17, = w?, A = (e1,...,eq), 1 = (M, m2,m3), 0 = | 6, | and
03



Maurer-Cartan equation dy = —v A 7y implies that

d(o™y) = (=0™y) A (077).

Thus
00 0 ] [0 0 0 00 0
d| 0 w ='p| = =10 w =" | A0 w =n|,
0 n 0 00 O 0n 0
0 0 0 | [0 0 0
df dw —'dn) | = —| wAl wAw—"npAn —wApy
0 dn 0 | R nAw —-nA'lp

By Theorem 2.4, we have 7; = w} = 375 _ hi0*, that is, n = ‘0 H.
Thus we obtain
dd = —(wAN¥b),
dw =—-wAw+'npAn (Gauss equation),
dn = —nAw (Codazzi equation),

nAG =0,
nA‘n=0,
n="'9H.

It is enough to show that there exists the second fundamental form
II = (h;;) = H by the following theorem

Theorem 2.5 (Bonnet, [5]). Suppose that two hypersurfaces M and

M C R"™! have the same first and second fundamental forms. Then they
are congruent.

Let us summarize the process of solving the case of n = 3 as follows:
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(i) Start with metric g = I.

(ii) Find orthonormal frame # such that [ = 37 ()2

)

(iif) Find Levi-Civita connection for (w!) 4,5 = 1,2,3 such that df =
—w A6 and 'w = —w. Then compute curvature ® = dw + w A w =
A

(iv) Solve the algebraic equation ® = HO '0H for H. Compute 'n An =
HO N'OH. Let ® = (®7). Compare both sides of ® = HO A '0H.

Both sides are skew-symmetric. Then we obtain the following three

equations.
(h22h33 - h%3)92 N 493 + (h23h13 - h12h33)93 A Ql
+ <h12h23 - h22h13>91 A 02 - (I)g,

(h13h23 - h12h33)02 VAN 93 + (hllhgg - h%3)03 VAN 91
+ (h12h13 - h11h23>91 N 92 = —(I)?,

(hi2hos — h13h22)92 NG+ (hishia — h11hQ3)93 A6
+ (huhgg — h%2)91 VAN 92 = q)%

In matrix form, these equations are

0> A 03 o3
adj(H) | *NO' | = | —®3
o' N 02 P?

To compute adj(H) = K, evaluate on (e, ;). Let &), = (e, e)).

Then
(1)323 <D§31 (1)312

— 3 3 3
K= _(I)123 _q)l?;l _(1)112

2 2 2
(I)123 q)l?)l (I)112



Since K = adj(H) = (det H)H 1,

1
H = K1
det H ’
det K = (det H)*(det H)™*
= (det H)?.

Thus det H = +v/det K. If det K > 0, Gauss equation is solvable
and the solution is unique up to sign and if det K < 0, there is no

solution.

(v) Check whether H satisfies Codazzi equation d(*0H) = —(*0H) A w.
If it holds, then H is a solution.

Here is a more general result of the codimension one case under some

restrictions for M"™ for n > 5. This result was shown by J. Vilms]6].

Let V be an n-dimensional real vector space with inner product. Let
A%V denote the (’2‘)— dimensional space of bivectors of V. A linear map
L:V — V defines a linear map LA L : A*V — A*V by (LA L)(z Ay) =
Lz A Ly. When V is taken to be the tangent space at a point of M",
the curvature tensor R at that point can be thought of as a symmetric
linear map R : A2V — A2V. Letting L denote the second fundamental
form operator and denoting the covariant derivative by V, we can express
the Gauss and Codazzi equations as R = L A R and VL is symmetric.
On the above setting, the problem of locally isometrically embedding
into R a C® Riemannian manifold M™ with curvature of rank > 6
is reduced to the following algebraic question: Given a symmetric lin-
ear map R : N>V — A2V, find necessary and sufficient condition in order

that there exists a symmetric linear map L 1V — V satisfying R = LA L.

Theorem 2.6 (J. Vilms|6]). Let M", with n > 5, be a Riemannian
manifold with nonsingular curvature tensor R. Then M"™ admits local

isometric imbedding into R™™ if and only if
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(1) R(l‘l /\£L‘2) /\R(ZL‘g/\ZL’4) —|—R(I1 /\113) /\R(l’g /\1‘4) =0, fO?“ all x; € Vv,

and

(2) RERIPRYS + 1RIRM RN > 0.

pq” i

Moreover, if n =3 mod 4, then (1) can be replaced by det R > 0.

References

1]

R. Bryant, S. S. Chern, R. Gardner, H. Goldschmidt and P. Grif-
fiths, Exterior differential systems (1991), Springer-Verlag, New York,
Berlin, Heidelberg.

R. Bryant, P. Griffiths and D. Yang, Characteristics and existence of
isometric embeddings, Duke Math. J. 50 (1983), 893-994.

P. Griffiths and G. Jensen, Differential systems and isometric em-
beddings, Annals of Math Study’s 114 (1987), Princeton University

Press, Princeton,New Jersey.

J. Nash, The embedding problem for Riemannian manifolds, Ann. of
Math.63(1956), 20-64.

M. Spivak, A comprehensive Introduction to differential geometry
(1979), Publish or Perish, Inc, Berkeley.

J. Vilms, Local isometric imbedding of Riemannian n-manifolds into
Fuclidean (n + 1)-space, J. Diff. Geom. 12 (1977), 197-202.



